Расчет усилия зажима заготовки


Схема зажима заготовки

Рис.1.3

Как видно из рисунка 1.3, сила подачи Ph стремится сдвинуть заготовку с призм, но этому препятствуют силы трения Т и Т1, возникающие на зажимаемой шейке вала и на рабочей поверхности призм.

Из уравнения равновесия сил определим величину усилия зажима [6]:

= (1.7)

где f и f1 - коэффициенты трения в местах приложения усилия W и на призмах. К - коэффициент запаса, в свою очередь находится по формуле:

К=К0* К1* К2* К3, (1.8)

где К0 - гарантированный коэффициент запаса, равный 1,5. К1 - коэффициент, учитывающий вид технологической базы, для чистовых баз, как в данном случае, К1=1. К2 - коэффициент, учитывающий увеличение сил резания вследствие затупления режущего инструмента, при фрезеровании чугуна и стали К2=1,2. К3 - коэффициент, учитывающий прерывистость резания, при фрезеровании К3=1,3.


Расчет силового привода

Для закрепления заготовки будем использовать рычажный зажимной механизм. В зажимных механизмах обычно применяются пневматические, гидравлические и смешанные типы приводов.

Пневматический привод при своей простоте и удобстве эксплуатации имеет ряд недостатков: во-первых, воздух сжимаем и при переменных нагрузках пневмопривод не обеспечит достаточной жёсткости закрепления. Во-вторых, данный вид привода развивает меньшее усилие, нежели гидропривод; и в третьих, из-за мгновенного срабатывания пневмопривода прижим будет резко ударять по детали, что отрицательно скажется и на заготовке, и на зажимном механизме, и на условиях труда рабочего. Соответственно, применим в нашем приспособлении гидравлический привод. Диаметр поршня гидроцилиндра находим по формуле:

Dп=1,13· , (1.10)

где P - рабочее давление масла, принимаемое в расчетах равным 1 МПа, Q - усилие на штоке силового привода, определяется для выбранного нами механизма по формуле:

, , (1.11),

где W- усилие зажима, - передаточное отношение по силе зажимного механизма.

Разработка конструкции корпуса приспособления.

Для приспособлений данного типа могут применяться литые, сварные и сборные корпуса. Ввиду того, что наша конструкция проста по конфигурации, а также из условий максимальной прочности и точности примем в качестве базового варианта литой корпус (рис.1.5).

Расчет точности приспособления

Сборка шпоночных соединений производится по методу полной взаимозаменяемости без дополнительной доработки шпонки или паза.

Точность паза определяется точностью размеров.

Рис.1.6

При работе на настроенном оборудовании точность размеров d-t и t зависит от точности настройки режущего инструмента и от точности выполнения элементов приспособления.

Рис.1.7

Точность элементов приспособления в направлении размера d-t рассчитывается по формуле:

(1.12)

где Тd-t - операционный допуск на размер d-t, мм;

КТ - коэффициент, учитывающий отклонение рассеяния значений составляющих величин от закона нормального распределения, КТ=1;

КТ1 - коэффициент, учитывающий уменьшение погрешности базирования при работе на настроенном оборудовании, КТ1=0,8;

εб - погрешность базирования в направлении операционного размера;

εз - погрешность закрепления;

εу. э - погрешность, зависящая от точности изготовления установочного элемента (призмы) по размеру В;

εи - погрешность износа установочного элемента;

ω - экономическая точность обработки, равна допуску на размер в;

КТ2 - коэффициент, учитывающий долю погрешности обработки в суммарной погрешности метода, вызываемой факторами не зависящими от приспособления, КТ2=0,6.

Погрешность износа установочного элемента рассчитывается:

εи= (1.15)

где И0-средний износ установочного элемента при усилии зажима Р=10 кН и при базовом числе установок N=100000, И0=115 мкм;

К1 - коэффициент, учитывающий влияние материала заготовки, К1=0,97;

К2 - коэффициент, учитывающий вид оборудования, К2= 1;

К3 - коэффициент, учитывающий условия обработки, К3= 0,94;

К4 - коэффициент, учитывающий число установок заготовки (NФ), отличающееся от принятого (N), К4=2,4.

Несимметричность паза относительно оси вала зависит от погрешности изготовления половины угла паза призмы.

sinΔα= (1.16)

Погрешность формы в продольном направлении зависит от перекоса призм совместно с корпусом приспособления относительно паза станка, вследствие наличия зазора между пазом и шпонками корпуса.

Величина угла перекоса корпуса рассчитывается по формуле:

tg αпер= (1.17)

Перекос паза Δф. п. определяется:

Δф. п. =LП* tg αпер= (1.18)

где Lшп -расстояние между базовыми шпонками, мм;

Lп - расстояние от края обрабатываемого шпоночного паза до наиболее удаленной направляющей шпонки.

Рис.1.8 Схема полей

Описание конструкции приспособления.

Приспособление предназначено для базирования и закрепления вала при фрезеровании шпоночных пазов шпоночной фрезой на вертикально - сверлильном станке 6Р12.

Приспособление содержит корпус поз.2, к которому жёстко прикреплены винтами призмы поз.4. Также на корпусе закреплена шпилька поз.3, к которой в свою очередь прикреплены прихват поз.7; гидроцилиндр поз.1. На нижней части корпуса закрепляются винтами направляющие шпонки поз.6, с помощью которых приспособление базируется на столе станка. Закрепление приспособления на столе осуществляется с помощью болтов поз.16.

Приспособление работает следующим образом. При подаче масла под давлением 1 МПа в нижнюю полость гидроцилиндра поз.1, поршень вместе со штоком движется вверх, давят на прихват поз.7, который, прижимает с необходимым усилием заготовку к призмам поз.4; таким образом осуществляется зажим заготовки. Для разжима масло подаётся в верхнюю полость гидроцилиндра, толкатель отходит назад, тянет за собой прихват и отжимает вал.


Заключение

В результате проделанной работы нами разработано приспособление для обработки шпоночных пазов на вертикально - фрезерном станке 6Р12. Простота конструкции, использование типовых и стандартных деталей и узлов существенно облегчает изготовление приспособление, а использование гидравлического силового привода облегчает труд рабочего, уменьшает вспомогательное время и увеличивает точность изготовления детали. Всё это в совокупности приводит к снижению себестоимости изготовления детали при повышению её качества.

Решение задач по расчету точности элементов приспособления.

Задача №1.65. Определить исполнительный размер цилиндрического установочного пальца d, обеспечивающий заданную точность выполнения размера А1 при фрезеровании поверхностей втулки (рис.2.1).

Исходные данные:

Рис.2.1

Решение. Точность механической обработки должна быть меньше допуска на размер.

, где

В свою очередь на точность механической обработки влияют точность метода обработки, износ установочного пальца, а также зазор между размерами D и d. Максимальная погрешность обработки будет равна:

Отсюда:

В предельном случае:

, мм.

Для обеспечения условия сборки принимаем

В результате анализа размера полей допусков принимаем установленный диаметр пальца Ø 30

Задача 1.75. Определяем ширину ленточки цилиндрической поверхности срезанного пальца, обеспечивающую свободную установку шатуна для обработки его поверхностей за два установа (рис.2.2).

Исходные данные:

Рис.2.2 Схема обработки шатуна

Решение. Ширина ленточки 2е цилиндрической поверхности срезанного пальца равна:

, где

Отсюда:


Литература

1. Справочник технолога - машиностроителя. Т2\ под ред.А.Г. Косиловой и др. - М.: Машиностроение, 1985 г.496 с., ил.

2. Станочные приспособления: Справочник. В 2х томах. - Т1 \ под ред. Б.Н. Вардашкина и др., 1984, 592с., ил.

3. Обработка металлов резанием: Справочник технолога \ А.А. Панов и др. - М.: Машиностроение, 1988, 736 с., ил.


6865894870173411.html
6865935094292698.html
    PR.RU™